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The orthoalgebras, introduced by Foulis and Randall and studied by various 
authors, have recently become a significant mathematical structure of the 
logicoalgebraic foundation of quantum theories. In this paper we give a coherent 
account of states (=finitely additive measures) on orthoalgebras. In the first 
section we review basic properties of (and constructions with) orthoalgebras and 
develop a useful "pasting technique" (Theorem 1.12 and Proposition 1.16) applied 
later in this paper (and possibly elsewhere, too). We also exhibit orthoalgebras 
with rather interesting and "exotic" state spaces (Example 1.20 and Proposition 
1.21). In the second section we construct orthoalgebras with preassigned state 
space properties. We prove a state representation theorem (Theorem 2.1) and 
obtain an orthoalgebraic version of Shultz's theorem (Theorem 2.7). In the third 
section we make a thorough analysis of the extension problem for states on 
orthoalgebras. We first study the orthoalgebras whose state spaces are finite 
dimensional. For these orthoalgebras we find a necessary and sufficient condition 
to allow extensions of states over larger orthoalgebras (Theorem 3.4). Then we 
prove that all Hilbertian orthoalgebras as well as all Boolean orthoalgebras allow 
extensions of states over larger orthoalgebras (Theorems 3.10 and 3.12). 

I N T R O D U C T I O N  

The logicoa lgebra ic  foundat ion of  quantum theories,  which has been 
pursued quite intensely recent ly  (e.g., Gudder ,  1979; Ka lmbach ,  1983; M~czyfi-  
ski and Traczyk,  1973; Mit te ls taedt ,  1978; Pt~.k and Pulmannovfi ,  1991; 
Varadarajan,  1968) adopts  for its under ly ing  structure so-cal led "quantum 
logic."  A quantum logic is usual ly  assumed to be an o r thomodula r  poset.  
Certain phi losophical ,  physical ,  and mathemat ica l  considera t ions  have sug- 
ges ted  that the "r ight" logic  o f  a quantum physical  exper iment  is an or thoalge-  
bra  (OA).  The  O A  is a part ia l  a lgebra  with a b inary  opera t ion  such that the 
o r thomodula r  law can be der ived  as a consequence  o f  the axioms imposed  on 
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the operation (see Definition 1.1. for the formal definition of the orthoalgebra). 
Viewed from the mathematical standpoint, the OAs are generalizations of 
orthomodular posets (and therefore they generalize orthomodular lattices and 
Boolean algebras). 

There seem to be (at least) two explicit advantages of OAs over the 
quantum logics used previously. The first reason is physical--the OAs (unlike, 
e.g., orthomodular lattices) have come into existence on the grounds of 
plausible physical assumptions based on "test spaces" (e.g., Foulis and Ran- 
dall, 1979, 1981). The second reason is technical--the axioms of an OA are 
natural and simple and the algebraic theory of OAs seems to meet well the 
needs encountered in applications (e.g., de Lucia and Dvur~censkij, 1993; 
Foulis and Bennett, 1993; Foulis et aL, 1992; Rtittimann, 1989). 

The main results to be proved in this paper have been stated in the 
abstract. As regards the technical aspects, it should be noted that the combina- 
torial and measure-theoretic constructions with OAs sometimes essentially 
differ from those used in orthomodular posets (see, for instance, the result 
formulated in Theorem 1.12). The proofs of combinatorially involved results 
are usually more transparent in OAs than in orthomodular posets. This allows 
us to obtain quite nontrivial state space representation results of Theorems 
2.1 and 2.7 in an intuitive way (the reader may compare the proofs with in 
a sense analogous results in the orthomodular posets and lattices (see, e.g., 
Greechie, 1971; Navara et al., 1988; Navara and Rogalewicz, 1991; Pt~ik, 
1987). On the other hand, some procedures with OAs enable a complete 
translation into orthomodular posets. For instance, Theorems 3.10 and 3.12, 
when specialized to orthomodular posets, considerably strengthen the results 
of Ptfik (1985). The OAs seem to be the most general "reasOnable,' orthomodu- 
lar structures that allow the latter important extension theorems to be valid. 
(Finally, it should be observed that the usual investigation of two-valued and 
Jauch-Piron states is omitted here--the obvious reason is Proposition 2.18.) 

1. BASIC CONSTRUCTIONS WITH ORTHOALGEBRAS. 
THE STATE SPACE OF AN ORTHOALGEBRA 

Orthoalgebras are algebraic structures that generalize orthomodular 
posets. They were originally introduced in Randall and Foulis (1981). The 
following simplified definition, which we have adopted in this paper, is due 
to Golfin (1987). 

Definition 1.1. An orthoalgebra (OA) is a quadruple (L, 0, 1, O) con- 
sisting of a set L containing two distinguished elements 0, 1 ~ L and a partially 
defined binary operation G on L that satisfies the following conditions for 
all a, b, c E L: 
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OA(i) [Commutativity law] If a �9 b is defined, then so is b �9 a and 
a • b = b O a .  

OA(ii) [Associativity law] If b �9 c and a �9 (b �9 c) are defined, then 
so a r e a O b a n d ( a G b )  O e a n d a O ( b O c )  = ( a G b )  G c .  

OS(iii) [Orthocomplementation law] For each a a L there is a unique 
b E L such that a �9 b is defined and a �9 b = 1. 

OA(iv) [Consistency law] If a �9 a is defined, then a = 0. 

The unique element b from OA(iii) is called the orthocomplement of a 
and denoted by a ' .  It can be easily seen that any OA L becomes an orthoposet 
if we define the ordering in L by putting a -< b r b = a �9 e for a c c L. 
Elements a, b ~ L are called orthogonal if a �9 b is defined. Let us now 
exhibit examples of OAs. 

Example 1.2. Let L be a "quantum logic" [i.e., let L be an orthomodular 
poset; see, e.g., Gudder (1979) and Pt~ik and Pulmannovfi (1991)]. If a, b 
L, let us define a G b exactly when a is orthogonal to b (i.e., when we have 
a ----- b'). In this case, a �9 b = a v b. Then (L, 0, 1, O) is an OA. 

If H is a Hilbert space, we denote by L(/-/) the lattice of projections of 
H. In view of the above example, it is an orthoalgebra. Also, Boolean algebras 
may be regarded as examples of OAs. It was shown in Foulis et al. (1992) 
that an OA (L, 0, 1, O) arises as in the example above from a unique 
orthomodular poset if and only if the following condition is fulfilled in L: 
I f a ,  b , c  ~ L a n d a ~ b ,  a Q c ,  a n d b O c a r e d e f i n e d ,  t h e n a O ( b O c )  
is defined, too. In the latter sense the orthoalgebras generalize orthomodular 
posets. If an OA cannot be induced by an orthomodular poset in the way 
determined in Example 1.2, we shall call it a proper OA. It should be noted 
that the above property characterizing proper OAs among orthomodular posets 
naturally appears in quantum event structures (Foulis and Randall, 1979; 
Randall and Foulis, 1981). 

Example 1.3. Let L be the set of all idempotents of a ring with unity. 
Then L becomes an OA if a G b is defined exactly when ab = ba -- 0, and 
in this case we p u t a O b  = a + b .  

Indeed, basic ring-theoretic properties yield that the partial operation �9 
defined in Example 1.3 satisfies the conditions OA(i)-OA(iv) (see also Foulis 
and Bennett, 1993). It should be noted that there are OAs that do not arise 
this way (Navara, 1994). 

Definition 1.4. Let K, L be OAs. A mapping f: K ~ L is called an OA 
morphism if f (1)  = 1 and if the following condition is satisfied: If a O b is 
defined in K, then f(a) G f(b) is defined in L and f(a G b) = f(a) �9 f(b). 
An OA morphism f :  K --9 L is called an embedding if f is injective and, 
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moreover, for any triple a, b, c E K the following condition is fulfilled: The 
equality a �9 b = c is defined and valid in K if and only if the equality f(a) 
�9 f(b) = f(c) is defined and valid in L. An embedding f :  K ~ L is called 
an isomorphism if f is surjective (in this case K and L are called isomorphic). 

Obviously, if f :  K --~ L is an embedding, then we can understand the 
set f (K) (with the operation inherited from L) as an OA in its own right. 
Thus, we may (and sometimes shall) identify K with a subset of L and call 
K a suborthoalgebra of L (sub-OA of L). Dually, if the latter case occurs, 
we may also call L an enlargement of K. 

Example 1.5. Let L = {0, 1, a, b, c, d, e, f, a ' ,  b', c', d', e', f ' }  be a 
set. Let us define, apart from obvious relations, 

a' = c Q f = d O e ,  c' = a O f = b G e ,  e' = a O d = b O c  

Observe that 

b ' = c O e ,  d ' = a O e ,  f ' = a O c  

Then L becomes an OA (see Fig. 1 for a schematic depiction of L). One 
easily sees that L is not an orthomodular poset. Indeed, a �9 c, a �9 e, and 
c �9 e are defined, but a �9 (c �9 e) is not (Foulis et al., 1992). Let us call 
this (proper) OA the triangle OA (the Wright triangle). The latter OA will 
be often used in the constructions that follow. Observe that the triangle OA 
possesses three three-atomic Boolean sub-OAs (they are indicated in Fig. 1 
by the sides of the triangle). 

Example 1.6. L e t L  = {0, 1, a, b, c, d, e , f ,  g, a ' ,  b', c', d ' ,  e ' , f ' ,  g'}. 
Let the elements of L\  { g, g'} be subject to the same requirements as in 
Example 1.5, and let us add the following relations: g' = c �9 d = e �9 f, 
c' = d O g ,  e' = f O  g, b' = d O f ,  d' = b G f  = c G  g, andf '  = b O  

c b e 

Fig. 1. 
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d = e �9 g. Then L becomes an OA. (See Fig. 2 for a schematic depiction.) 
Let us call this (proper) OA the triangle-circle OA. Observe that the triangle- 
circle OA has six three-atomic Boolean sub-OAs (they are indicated in Fig. 
2 as the sides of the triangle, two side-bisectors, and the circle). Moreover, 
the triangle OA is a sub-OA of the triangle-circle OA. 

Proposition 1.7. An OA L is proper if and only if it contains the triangle 
OA as a sub-OA in such a way that a �9 (c �9 e) is not defined in L (we use 
the notation of Example 1.5). 

Proof According to Foulis et al. (1992), an OA L is proper if there are 
a , c , e  E L s u c h t h a t a O c ,  a G e ,  c O e are defined in L, b u t a Q ( c O  
e) is not. If such elements exist in L, then they generate the triangle OA. 
Indeed, the nonexistence of a �9 (c �9 e) implies that a, c, e are nonzero. 
Suppose, for instance, that (c G e)' = 0. Then there are elements d, f ~ L 
such tha te  = c' = a G f a n d c  = e' = a O d .  S i n c e c O e  = ( a O f )  
(a �9 d) = (a �9 a) | ( f  �9 d) is defined, we infer that a = 0. This is a 
contradiction. We argue similarly in the cases (a �9 c)' = 0 or (a G e)' = 0. [] 

Remark 1.8. It should be noted that the second condition in Proposition 
1.7 is not superfluous. Indeed, the OA depicted by its Greechie diagram in 
Fig. 3 is an orthomodular poset (Dichtl, 1981), which contains the triangle 
OA as a sub-OA. However, the term a �9 (c �9 e) is defined there. 

Let us now take up basic constructions with OAs. They will be frequently 
used later. 

Definition 1.9. Let {L,~la ~ I} be a collection of OAs. Let us denote 
by L the Cartesian product of L~'s (thus, L = I-I~ I L,~). Let us further endow 
L with 0, 1 and with �9 coordinatewise. Then L is called a product of { L,~ I c~ 
E I}. 

One can easily check that a product of OAs becomes again an OA and 
any projection 'rr~: L ---> L~ becomes an OA morphism onto L~ (a ~ /). 

12 

C b e 

Fig. 2. 
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( 
Fig. 3. 

1 
Let us now define the notion of an interval in an OA. Suppose that (L, 

0, 1, O)  is an OA and suppose that a E L, a v~ 0. Consider the set [0, a]L 
= {b E Lib  <-- a} endowed with a partial operation Oa defined as follows: 
Oa = G n [0, a] 3 (i.e., b Oa c = d if and only if b, c, d ~ [0, a]c and b 
�9 c --- d). Then ([0, a]L, 0, a, G , )  is called an interval in L. 

Proposition 1.10. The interval ([0, a]b  0, a, Oa) is an OA. 

Proof The conditions OA(i) and OA(iv) are fulfilled automatically. As 
for OA(iii), we see that if b E [0, a]L, then a = b �9 c for a unique element 
c. As for OA(ii), if (b Oa c) Oa d is defined in [0, a]L, then a = ((b ~a C) 
O a d )  O e  = ( ( b O c )  O d ) O e  = ( b O ( c O d ) ) O e  = (b Oa (c O~ d)) 
O e. Since the cancellation law is valid in OAs, which is a direct consequence 
of the axioms of an OA (see also Foulis et al., 1992; RUttimann, 1989), we 
see that (b Ga c) O~ d = b O~ (c O~ d). �9 

We shall now describe a "pasting" technique for OAs which enables us 
to construct OAs with preassigned intrinsic or state-space properties. Prior 
to that, let us agree to call b ~ L a relative complement of c in [0, a]c if c 
G b = a. We shall sometimes use the notation b = a O c. 

Definition 1.11. Let ~ be a family of  OAs that satisfies the following 
conditions for all distinct K, L in ~/: 

(PI)  IK = 1L (this means that all greatest elements coincide). 
(P2) I f a ,  c ~ K n  L a n d i f a  ~ [0, c ] K n  [0, c]L, then the relative 

complement of  a in [0, c]x agrees with the relative complement 
of a in [0, c]L. 

(P3) I f a ,  d c K , b  ~ L, a n d c  ~ K f q  L a n d i f a  O/~d = c a n d c  
OL b is defined, then there is an M E ~ such that a G~t d = c 
and c G~t b is defined. 
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Further, put P = U L ~  L and define a partial operation �9 on P by setting 
�9 = ALGa OL (that is, we set a G b = c if and only if there is an L E 
such that a OL b = c). Also, define 1 = 1L, 0 = 0L, where L is an arbitrary 
element of s~. Let us call the resulting quadruple (P, 0, 1, G) the pasting of x/. 

Theorem 1.12. If a collection s~ of OAs satisfies the conditions (PI)-  
(P3), then its pasting, (P, 0, 1, G), is an OA. 

Proof The quadruple (P, 0, 1, O) obviously fulfills OA(i) and OA(iv) 
as a direct consequence of (P1) and (P2). The condition OA(iii) follows from 
(P1) and (P2), too. The condition OA(ii) is ensured by (P3). [] 

Remark 1.13. For later use, let us observe that the condition (P3) in the 
above construction is weaker than the following condition: 

(P3+) I f d  ~ K N L, then either [0, d]K = [0, d]L or [0, d ' ]x  = [0, d']L. 

Observe also that if the collection s~ satisfies the condition (P3+), the 
verification of (P2) is considerably simpler. We shall frequently consider 
pastings that satisfy this stronger condition (P3+). 

The pasting technique described above yields the following results. 
[Recall first that a maximal Boolean sub-OA in an OA L is called a block 
of L. One can easily prove by the standard use of Zorn's lemma that every 
Boolean sub-OA of L can be extended to a block in L. Taking advantage of 
this observation, one immediately sees that the collection of all blocks in an 
OA fulfills the conditions (PI)-(P3).] 

Theorem 1.14. Every OA can be regarded as the pasting of the collection 
sg of all its blocks. 

A transparent way of depicting a finite OA and its block configuration 
is the so-called Greechie diagram [see Greechie (1971) for the original use 
of this idea]. The Greechie diagram of an OA L is a hypergraph whose 
vertices correspond to atoms of L and edges correspond to blocks of L. For 
instance, Fig. I (resp. Fig. 2) is the Greechie diagram of the triangle OA 
(resp. the triangle-circle OA). 

The pasting constructions that follow will be used for the state space 
investigations in the next paragraphs. Let K, L be disjoint OAs and let a 
K be an atom in K. (An element a ~ K is called an atom in K if the inequalities 
0 < b ~ a imply a = b.) Let us consider the OA product [0, a ']x • L. For 
each d ~ [0, a']K, let us define h(d) = (d, OL) ~ M and h(d') = (d',  1L) E 
M. Obviously, h is an isomorphism between the sub-OA [0, a']x U [a, 1]K 
of K and the sub-OA {(d, e) E M i d  ~ [0, a']x, e E {0L, IL}} of M. 

Let us now consider such isomorphic copies of K and M--denoted again 
by K and M-- tha t  d ~ K equals h(d) ~ M for all d E [0, a']x U [a, 1] x. 
Upon the foregoing identification, we obtain the following result. 
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Proposition 1.15. Let K, L be OAs and let a ~ K be an atom in K. If 
we put M = [0, a'] X L and understand K, M subject to the identification 
described above, then K, M fulfil the conditions (P1), (P2), and (P3+) of 
the pasting. Moreover, if P is the pasting of K and M, then [0, a]p is OA- 
isomorphic to L. 

Proof The condition (P1) is satisfied trivially, The condition (P3+) is 
fulfilled, too, for if d E K (7 M, then either [0, d]~ = [0, d]M (provided d 
e [0, a']x) or [0, d']K = [0, d']M (provided d' ~ [0, a']x). The property 
(P2) follows from h being an isomorphism. �9 

The intuitive content of the latter construction suggests the following 
convention. We shall say that the OA P of Proposition 1.15 is formed by 
substituting the atom a ~ K by the orthoalgebra L. 

The latter construction can be further generalized the following way. 
Suppose that K, L are orthoalgebras. Suppose further that b is an element of 
L\  {0, 1 } and a is an atom in K. Let Mdenote the OA we obtain by substituting 
the atom a e K by the orthoalgebra [0, b]u Take now such isomorphic copies 
of L and M--denoted again by L and M-- tha t  the corresponding elements 
of [0, b]L and [0, a]M are identified and so are also their complements. It is 
easy to see that the latter OAs L and M fulfil the conditions (P1), (P2), and 
(P3 +) of the pasting. Let P denote the pasting of L and M. We then say that 
P is formed by connecting the atom a ~ K with the element b ~ L. (It should 
be noted that L 71 M = [0, b]L U [b', 1]L.) 

The latter construction can be performed simultaneously for a collection 
of orthoalgebras provided the elements bs (e~ ~ I) of the "fixed" OA L 
are in some sense independent. The following proposition gives a precise 
formulation of this result. 

Proposition 1.16. Let L and K~ (a ~ I) be OAs. For any c~ ~ L let as 
be an atom of Ks and b,~ be an element of L\{0, 1 }. Let Ps be the OA which 
is formed by connecting as e K,~ with bs e L. If for any ~, [3 E I the partial 
operation G is not defined for the couple b' ,  b~, then the collection {Ps l a 

I} fulfills the conditions (P1), (P2), and (P3+) of the pasting. A corollary: 
The collection {P,~IoL E I} can be pasted in the sense of Proposition 1.12 
to give rise to its pasting, P. 

Proof By the construction of P,~ (o~ ~ / ) ,  we immediately see that { P~ I 
c I} admits a pasting as soon as we verify that {Psi a E I} fulfills the 
condition (P3+) (see Remark 1.13). First, we know that Ps f7 L = [0, b~]L 
U [b~,, 1]r. Consider now the set Ps f7 P~ (e~ :/: [3). Obviously, P~ 71 P~ is 
a sub-OA of L. Choose an element c e P~ f') P~. If c ~ [0, b,~]L f7 [0, b~]b 
then [0, c]p~ = [0, c]e~ = [0, c]L C Ps f3 P~. If c ~ [b', 1]L f7 [b~, 1]L, 
then [c, 1]p~ = [c, 1]e~ C Ps f7 P~. Finally, suppose that c e [0, b~]L fq 
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[b ' ,  1]L. This implies that b" <- b~ and therefore the operation b" Q b~ is 
de f ined - -a  contradiction. The proof is complete. [] 

Under the assumptions of  the latter proposition, we say that the OA P 
is obtained by connecting the atoms as ~ Ks with b~ E L (~ ~ I). 

Let us now take up the states on OAs. 

Definition 1.17. Let L be an OA. A mapping s: L ~ [0, 1] is called a 
state on L if: 

(i) s ( 1 ) =  1. 
(ii) s(a O b) = s(a) + s(b) provided a, b ~ L a n d a G b i s d e f i n e d  

in L. 

The notion of state on L, which may formally be regarded as a generaliza- 
tion of the notion of probability measure, can be associated with the physical 
"state" if we understand L as a "quantum logic" (see, e.g., Gudder, 1979; 
Ptfik and Pulmannovfi, 1991; Varadarajan, 1968). In this paper we analyze 
the state space of an orthoalgebra purely mathematically (though the motiva- 
tion for our consideration often comes from quantum physics). Let us denote 
by SO(L) the set of all states on L. 

The following results illustrate basic properties of the states on an OA 
and set the stage for the investigation in the following sections. Let us first 
observe that a proper OA cannot be too near to either a Boolean algebra or 
a projection lattice. 

Proposition 1.18. (i) Let L fulfil the following property: I r a ,  b ~ L and 
a �9 b '  is not defined, then there exists a state s E S~ such that s(a) = 1 
and s(b) < 1. Then L is not proper (i.e., L is an orthomodular poset). 

(ii) Let L fulfil the following property: If  a ~ L and a r 0, then there 
is a Jauch-Piron state s ~ SO(L) with s(a) = 1. [A state s E SO(L) is called 
Jauch-Piron  (Riittimann, 1977) if the equality s(c) = s(d)  = 1 for c, d 
L implies the existence of an element e e L such that e <-- c, e ~ d, and 
s(e) = 1,] Then L is not proper. A corollary: If  L is finite and all states on 
L are Jauch-Piron, then L is a Boolean algebra. 

Proof  By Proposition 1.7, if L is proper, then it contains the triangle 
OA as its sub-OA and a �9 (c �9 e) = a �9 b'  is not defined in L (here we 
have preserved the notation of Example 1.5). If  s e SO(L) and s(a) = 1, then 
s(c) = s(e) = 0 and s(b) = 1. Thus, the state s neither fulfills the condition 
of Proposition 1.18 (i) nor it is Jauch-Piron. [The corollary follows then 
from Bunce et al. (1985).] 

The next proposition shows that states on a finite product of OAs are 
generated by the coordinate states. 
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Proposition 1.19. Let {Lili <- n} be a finite collection of  OAs and let 
L =IIi<_, Li be the OA product  of  {Lili ~ n}. Let si e ~(Li) (i <- n) and 
let {ai l i  -< n} be such a set o f  nonnegative numbers  that Ei~n a~ = 1. For 
any i (i ~ n), let 7ri: L ~ Li be the canonical projection onto Li and let us 
define a state on L, some gi, by putting gi = s~ o 7h. Then the mapping  s = 
~i<_n o j i  is a state on L. Moreover,  all states on L can be represented the 
latter way. 

The proof  is straightforward (see also Mafiasov~i and Pt~ik, 1981). 
As an application of  Proposit ion 1.19 (and as a prel iminary to the next 

section) let us show that every finite-dimensional s implex can be viewed as 
a state space of  a finite proper  OA. We begin with the fol lowing example.  

Example 1.20. Let L be the (proper) OA depicted by its Greechie  diagram 
in Fig. 4 (the kite OA). Then L does not possess any state [thus, 5r = 0]. 

Proof It is easy to check that the configuration of  the blocks in Fig. 4 
satisfies the conditions (P1), (P2), and (P3+)  for the pasting. Let  us now 
assume that s e 5e(L) and look for a contradiction. We first have 

[s(a) + s(b) + s(c)] + [s(d) + s(e) + s( f )  + s(g)] 
+ [s(h) + s ( k )  +s(m)] = 1 + 1 + 1 = 3 

(the terms in the brackets are sums over  blocks in L). Moreover ,  

[s(a) + s(d) + s(k)] + [s(b) + s(f)  + s(m)] + [s(c) + s(e) + s(h)] = 3 

and therefore s(g) = O. Similarly, 

[s(a) + s(g) + s(m)] + [s(b) + s(d) + s(h)] + Is(c) + s( f)  + s(k)] = 3 

and therefore s(e) = 0. Finally, 

h k re 
Fig. 4. 
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[s(b) + s(e) + s(k)] + [s(c) + s(e) + s(h)] + [s(a) + s(g) + s(m)] = 3 

and therefore s(d) + s ( f )  = 0. We infer that s(d) + s(e) + s ( f )  + s(g) = 
0, which is a contradiction. This proves that SO(L) = 0. [] 

Proposition 1.21. Suppose that L is a (finite) stateless OA [SO(L) = 0]. 
Then there is a (finite) proper O A K  such that card S~ = 1 and such that 
there is an epimorphism f :  K --> L. Moreover, the unique state of SO(K) is 
two-valued. 

Proof I f L  is a stateless OA and if we put K = L • {0, 1}, where {0, 
t } is a two-element Boolean algebra, then card SO(K) = 1 (Proposition 1.19). 
Indeed, the unique state s E SO(K) is the two-valued state defined by the 
formula s((k, i)) = 1 if and only if i = 1. Obviously, the projection ~r: K ---> 
L is an epimorphism. [] 

The result formulated below Proposition 1.19 can be now seen easily. 
I f  L is such a finite OA that SO(L) = 1 and if Li = L for any i ----- n, then 
SO(IIi<_n Li) is an n-dimensional simplex (Proposition 1.19). The next section 
gives a considerable deepening of the latter result. 

2. O R T H O A L G E B R A S  W I T H  P R E A S S I G N E D  S T A T E  S P A C E S  

It can be shown easily that for any OA L the state space SO(L) of L is 
a convex set. Moreover, this set becomes a compact topological space when 
we view it as a subspace of R L, where R L is supposed to be endowed with 
the "pointwise" topology [in fact, SO(L) C [0, 1]L]. In what follows we shall 
prove that the "vice versa" statement is also true: Every compact convex set 
in R ~ (for a set I )  can be represented as a state space of a proper orthoalgebra 
[the representation means, as usual, the existence of an affine homeomorphism 
between SO(L) and the given compact convex set]. But we shall show that a 
considerably stronger result is true: The latter OA L may be required of an 
"arbitrary degree of noncompatibility" (i.e., L may be required to contain 
an arbitrary preassigned OA as its sub-OA). This proper ty--bes ides  being 
interesting in its mathematical conten t - - seems of importance as far as a 
potential application in quantum theories is concerned. 

Theorem 2.1. Let L be an OA and let S be a compact convex subset of  
the state space SO(L). Then there is an O A K  with the following properties: 

(i) L is a sub-OA of K. 
(ii) A state s E SO(L) admits an extension over K if and only if s E S; 

moreover, if the extension of s exists, then it is unique. A corollary: S is 
affinely homeomorphic to SO(K). 
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(iii) I f  s belongs to the interior o f  S, Int S, and if s is strictly posit ive 
[i.e., s(a) > 0 whenever  a :~ 0], then the (unique) extension of  s over  K is 
also strictly positive. 

P r o o f  We shall need a few auxiliary propositions. 

Proposi t ion 2.2. Let L be the triangle-circle OA (see Example  1.6) and 
let s be a state on L. Then s(a) = s(b) = s (g )  and s(c) = s (d )  = s(e)  = s ( f )  
= (1 - s(a))/2.  A corollary: I f  s(a) E (0, 1) for s ~ 5e(L), then s is 
strictly positive. 

P r o o f  Considering the corresponding Greechie  d iagram (see Fig. 2), 
we consecut ively obtain 

2s(a) = 1 - s(c) - s ( f )  + 1 - s (d)  - s(e) = 2s(b) = 2s(g)  

Thus, s(a) = s(b) = s(g)  and s(c) = s (d )  = s(e) = s ( f )  = (1 - s(a))/2.  �9 

Proposi t ion 2.3. Suppose that we are given a natural number  n ~ N, n 
----- 2. Then there is a finite proper OA Xn which possesses two atoms c, d E 
X,, with the following properties: 

(i) I f  s is a state on Xn, then s (d)  = (l/n)(1 - s(c)).  
(ii) For each a e [0, 1] there is a unique state s ~ 5e(Xn) such that s(c) 

--- a [in particular, every state s ~ 5e(Xn) is uniquely determined by its value 
at c]. Moreover ,  if  c~ ~ (0, 1), then the latter state s ~ ~ ( X , )  is strictly positive. 

P r o o f  I f  n is even (n = 2k), then we can take for X~ the OA determined 
by its Greechie  diagram in Fig. 5 (the tree OA). Since X, is built up of  copies 
of  the triangle-circle OA and since the configuration of  blocks is legit imate 
for the pasting, Proposi t ion 2.3 follows immediate ly  f rom Proposit ion 2.2 
and Theorem 1.12. I f n  is odd (n = 2k + 1), then it suffices to add an a tom 
d2~+l to the " long" vertical block (see the dashed line in Fig. 5). �9 

Prior to the next result, let us recall the notion of  an M-base  in OAs 
[see Marlow (1978) for the original use of  this notion]. Let  L be an OA and 
let M be a subset o f  L. Then M is called an M-base  in L if M satisfies the 
fol lowing two conditions: 

(i) I f  a, b e M and a, b are distinct, then a �9 b is not defined in L. 
(ii) I f a  ~ L, then either a e M o r a '  ~ M. 

It can be proved by a standard Zorn ' s  l e m m a  argument  that there exists 
an M-base  in any OA. 

Proposi t ion 2.4. Let M b e  an M-base  in L. Then the fol lowing statements 
hold true: 



�9
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(i) I f  s, t ~ 9~ and s(a) = t(a) for any a ~ M\{1}, then s = t. 
(ii) If  we are given orthoalgebras L~ with atoms b~ ~ L,, (a ~ M\ { 1 }), 

then we can construct the pasting P formed by connecting each atom b~ 
L,, with a '  E L. 

Proof  Part (i) is obvious and part (ii) immediately follows from Proposi- 
tion 1.16. �9 

Proposition 2.5. Let L be an OA and letp,  Pi (i - k) be rational numbers. 
Let ai ~ L (i --< k) and let T be the set of  all states on L that satisfy the 
following inequality: 

(H) ~, pis(ai) + p >~ 0 
i<_k 

Then there is an O A K  such that the following three conditions are satisfied: 

(i) L is a sub-OA of K. 
(ii) A state s ~ 5e(L) has an extension over K if and only if s ~ T; 

moreover, if the extension of s over K exists, then it is unique. 
(iii) If  s ~ 5e(L) is strictly positive and if s satisfies a strict inequality 

of  (H), then the extension of s over K is also strictly positive. 

Proof  Let M be an M-base in L fixed from now on. Put M'  = {b 
L i b  = a' for a ~ M}. If  ai ~ M',  then ai ~ M and we may substitute 1 - 
s(a') for s(ai) into (H) preserving the type of the equality (the coefficients 
p, p; will change, of  course). It follows that without any loss of  generality 
we may (and shall) suppose that ai ~ M'  for all i (i -< k). Omitting the zero 
summands, we shall suppose thatpi ~ 0 and ai ~ 0 (i <- k). Thus, Proposition 
2.4(ii) is applicable to ai (i <- k). 

We are now going to discuss in turn the possibilities which may occur. 
Suppose first that there is an i (i -< k) such that pi < 0. We then claim that 
we can construct an enlargement of  L, some L, such that all states on L admit 
a unique extension over L and, moreover, the original condition (H) transforms 
into a condition of the form 

pjs(aj) - pis(ai) + P >- 0 
j<--k,j-/:i 

Thus, by induction, we shall be able to assume that all coefficients Pi (i 
k) are positive. 

Let us prove the statement we claimed above. Let us take the triangle- 
circle OA, defined in Example 1.6 and denoted here by Q, and let us connect 
the distinguished atom a ~ Q (in the notation of Fig. 2) with ai E L. Let us 
denote the resulting OA by s By the properties of  Q (see Proposition 2.2), 
each state on L admits a unique extension to a state on s I f  we now consider 
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the element c �9 e of Q (in the notation of Fig. 2) and if we understand it 
as an element of s (this may be assumed since Q is a sub-OA of s we see 
that s(ai) = 1 - s(c �9 e) for any state s ~ ~f(L). We therefore obtain p~s(ai) 
= Pi + ( - p i ) s ( c  G e) and we may put ai = c �9 e and p = p + Pi [the M- 
base M on L can be easily extended to an M-base on s that contains (c �9 
e)']. This proves the required statement. 

It follows that without any loss of generality we may assume that all 
the coefficients pi(i <- k) are positive. Let us rewrite the condition (H) in 
the form 

(H) ~ pi(1 - s(ai)) <- q 
i<_k 

where q = p + Zi_<~ p;. The latter condition (H) is ob__viously equivalent to 
the condition (H) and, moreover, the left-hand side of (H) is always nonnega- 
tive. Let us now discuss the alternatives for the values of q. 

First, suppose that q < 0. Then we are to embed the original OA L into 
a stateless OA. Take the kite OA (see Example 1.20) and denote it by X. If 
we now connect an arbitrarily chosen atom of X with an arbitrary element 
of L\  {0, 1 }, then we obtain the required stateless OA, K, that contains L as 
its sub-OA. 

Second, suppose that q = 0. Then our condition (H) is equivalent to 
the requirement of s(ai) = 1 for all i - k. Let us choose an OA, say V, such 
that card ~e(V) = 1 and the unique s ~ 9~(V) is two-valued (such OAs do 
exist; see Proposition 1.21). Take OA-isomorphic copies of V, some V~ (i 
k), and pick atoms ci ~ Vi such that Si(Ci) = 1 for any si ~ S~ (i <- k). 
Let us now connect the elements ci E V~ with a i ~ L (this is legitimate since 
ai e M'\{0} for the M-base M- - see  Proposition 2.4(ii)). It is obvious that 
the OA K arising by this pasting enlarges L and satisfies s(a~) = 1 (i <- k) 
for any s e 5f(K). 

Third, suppose that q > 0. Then we can rewrite the condition (H) in 
the form 

P/(1 - s(ai)) <-- 1 
i<--k q 

Since q, Pi (i <-- k) are rational numbers, we can by repeating ai rewrite the 
above inequality in the form 

(H) ~ I (I -s(aj))~ 1 
]<-m nj 

where nj (j  <-- m) are natural numbers strictly greater than 1 and {a~lj <-- m} 
= {ai l i  <- k}. For a l l j  (j --< m), let us now take a copy of the tree OA X,j  
(Fig. 5) with atoms Q, resp. b i, corresponding to the atoms c, resp. d, in Fig. 
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5. For all j --< m, connect c i with ai ~ L. What we obtain as the result of  the 
pasting is an OA/r  Considering now the elements bJ as elements of/r  we 
see (Proposition 2.3) that every state s ~ L admits a unique extension to a 
state t on / r  and, moreover, 

t(bj) = 1 (1 - s(~j)) (j <. m) 
ni 

We will now enlarge the OA ~" by adding a block that contains all of  the 
elements bj ~ /r (j -< m). To this end, let B be the Boolean algebra with m 
+ 1 atoms b~ . . . .  b,,, e, where e is a new atom. Let us now take for K the 
pasting o f / r  and B. One easily sees that if  t ~ SO(/?) is the extension of s 
S~ then t admits an extension over K exactly if "Zj<_,, t(b i) -< 1. This 
equality is equivalent to (H) and the proof of  Proposition 2.5 is complete. I 

Proposition 2.6. Let to be an ordinal number. Let {L~la < to} be a 
collection of OAs. For any pair o~, t3 with ot __- [3 < to let there be an OA- 
embedding e~.~: L~ ~ L~ such that e~,,~ = idL~ and, moreover, e~,~ = e~,~ o 
e~,~ for any triple c~, 13, ~ with oL -< 13 ----- ~ < to. Then there is an inductive 
limit of {L~ lot < to} in OAs. In other words, there is an OA L and a collection 
f~: L~ ~ L (a E Wo,) of OA-embeddings such that the following two conditions 
are satisfied: 

(i) L = U~<,of,~(L,~). 
(ii) If  ~x < 13 < to, then ft~ = e~,~ o f~. 

Proof Put W = U~<~ (II~_<t3<,o L~) and consider the subset Y of W 
determined as follows: An element w = (w~, w~+l . . . .  ) E W belongs to Y 
if and only if w~ = ef3,~(w~) for any 13, ~x < 13 < to. Let us now factorize 
the set Y via such an equivalence 0 that we have w 0 v exactly when there 
is a ~ / <  to with w~ = vv. Let us denote the set Y/O by L and convert L into 
an OA by canonical copying of 0, 1, and �9 from W into L. It can be seen 
easily that L is the desired limit. �9 

Let us now return to the proof of  Theorem 2.1. Since the given S [S C 
SO(L)] can be viewed as a compact convex subset of the (locally convex 
topological linear space) R c, it is well known from the convexity theory (see, 
e.g., Schaefer, 1971) that S is the intersection of all closed half-spaces in R L 
that contain S. Every closed half-space is determined by a hyperplane. Taking 
into account the description of the hyperplanes in the "weak" topological 
liner space R L and approximating every hyperplane by hyperplanes with 
rational coefficients, we finally see that S can be determined by a collection 

of inequalities of the type (H) (the M-base in question being taken arbitrarily 
but uniformly for all inequalities in ~ ) .  We have to prove that for any 
collection ~ of inequalities there is an enlargement of  L, some K, such that 
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a state s e SO(L) admits a unique extension over K if and only if s fulfills 
all the inequalities in ~ .  

Let us well-order the set ~ .  Thus, ~ = {H~IoL < to} for some ordinal 
number to. Using the transfinite induction, let us now construct a collection 
of OAs, some G = {L~ I c~ < to } such that the following conditions are satisfied: 

(i) If et -< [3 < to, then there is an OA-embedding e~,,~: L~ ~ L~ and, 
moreover, e~,~ = ev, ~ o e~,~ for any triple a, [3, "y with oL <-- [3 <- ~/ < to. 

(ii) A state s ~ S~(L) admits a unique extension over L~ if and only if 
s fulfills all the inequalities of the set {H~I [3 - a}. 

Indeed, if a is isolated, then we can directly apply Proposition 2.5. If 
e~ is a limit, then we first take the limit L of the collection {L~I[3 < o~} 
(Proposition 2.6) and then enlarge L to the desired L~ by a pasting that 
guarantees the inequality H,~ (we use Proposition 2.5 again). In order to 
complete the proof, we now take the limit of the entire collection {L~ I a < 
to}. It follows from the construction that L will allow exactly the extensions 
of those states that satisfy all of the inequalities H~, (a < ~o). This concludes 
the proof of Theorem 2.1. �9 

As a corollary to Theorem 2.1 we obtain the following representation 
theorem. [It should be noted that this representation theorem may be under- 
stood as a generalization of Shultz's (1974) theorem.] 

Theorem 2.7. Let S be a compact convex subset of a locally convex 
topological linear space. Then there is a proper OA L such that S~ is 
affinely homeomorphic to S. Moreover, this affine homeomorphism maps Int 
S onto the set of all strictly positive states on L. 

Proof Without any toss of generality, S may be supposed a subset of 
[0, 1] l (Schaefer, 1971). The latter space is affinely homeomorphic to the 
state space of the OA which arises by the pasting of the collection {Bi[ i 
I}, where each Bi is a four-element Boolean algebra, and where we assume 
tha tB i93 Bj = {0, 1} f o r i  e j .  

By Theorem 2.1, there is a proper OA L such that SO(L) is affinely 
homeomorphic to S. �9 

3. EXTENSIONS OF STATES (THE CLASS STEAD) 

In this section we shall be interested in extensions of states from subor- 
thoalgebras over the entire orthoalgebras. A natural condition on OAs then 
is that they are unital [recall (Foulis and Bennett, 1993) that L is called unita! 
if for any a E L, a =/: O, there exists a state s on L such that s(a) = 1]. 
(Indeed, by Theorem 2.1 every OA is a suborthoalgebra of a stateless OA! 



1456 Hamhalter, Navara, and Pt~ik 

It follows that the state extension problem would be meaningless for gen- 
eral OAs.) 

In the sequel, the following class of  orthoalgebras will play a central 
role in our investigations. 

Definition 3.1. Let K be a unital OA. We say that K is state-extension- 
admissible if the following condition is satisfied: If  K is a suborthoalgebra 
of a unital orthoalgebra L and if s ~ bo(K), then there is a state t ~ bo(L) 
such that t l K = s. 

Thus, K is state-extension-admissible if all the states of K admit exten- 
sions over any unital OA that contains K. Let us denote the class of  all state- 
extension-admissible OAs by STEAD. We shall show in this section that the 
class STEAD is (perhaps surprisingly) quite large and that it contains OAs 
familiar within quantum theories. 

Let us first introduce a special type of state which will be relevant to 
our consideration here and may be found useful elsewhere, too. 

Definition 3.2. Let K be an OA and let s E S(K). Then s is called 
hyperpure if there is an element a ~ K such that s(a) = 1 and, moreover, 
the state s is the only state with the latter property. 

Let us denote by bohp(K), resp. b~ the set of all hyperpure, resp. 
pure, states on K. (A state is called pure if it cannot be written as a convex 
combination of two distinct states.) Obviously, every hyperpure state has to 
be pure. Thus, bohp(K) C bop(K) for any K. One sees easily that if, for instance, 
K is a finite Boolean OA or if K = L(H) for a Hilbert space H with dim H 
< ~, then bohp(K) = bop(K). According to Navara and Ptfik (1983) and Navara 
and Rogalewicz (1988), there are finite OAs (even orthomodular lattices) 
which possess pure states that are not hyperpure. 

Our first result indicates the significance of hyperpure states in our 
context. [Recall that if S C bo(K), then the symbol c--6-n--f S denotes the 
topological closure in bo(K) of the convex hull, cony S, of S.] 

Theorem 3.3. Let K be a unital OA. If  bop(K) C ~ bohp(K), then K 
STEAD. 

Proof Suppose that K is a suborthoalgebra of L and suppose further 
that L is unital. By the Krein-Mil lman theorem (see, e.g., Schaefer, 1971), 
c o n v  bop(K) = bo(K) and so ~ bohp(K) = bo(K). This implies that if every 
hyperpure state on K admits an extension over L, then so does every state 
on K. Indeed, if s = ~i<n OLiSi, where every si admits an extension over L, 
then so does s. Moreover, suppose that s,~ (c~ E /) is a net in bo(K) that 
converges to a t ~ bo(K). Suppose that g~ (or ~ /3  is a net in bo(L) of  extensions 
of s,~. Since bo(L) is compact, we obtain that a subset of  g~ converges to a 



States on Orthoalgebras 1457 

state ~ E 5~(L). Since the convergence  in 5~ is pointwise,  we infer that 
71K = t, which we wanted to check. What  remains to show is that every 
hyperpure  state of  K admits an extension over  L. To do this, let s ~ 5ehp(K). 
Then there is an element  a ~ K such that s(a) = 1 and, moreover ,  s is the 
only state of  fT(K) with the latter property. Since L is unital, there is a state 
t E 5~(L) such that t(a) = 1. Put u = t t K. Since u is a state on K with u(a) 
--- 1, we  see that u = s. Thus, s = t lK  and this completes  the proof  of  
Theorem 3.3. �9 

The  next  result says that the sufficient condition for an OA to belong 
to STEAD which we have employed  in Theorem 3.3 becomes  also necessary 
if the state space of  the OA in question is not too complex.  

Theorem 3.4. Let K be a unital O A  and let d im bY(K) < +o~. Then K 
E STEAD if  and only if ,~p(K) C ~ ,~~ ). 

Proof  We have to prove the necessity;  the sufficiency fol lows f rom 
Theorem 3.3. We shall need a few lemmas .  [The orthoalgebra K referred to 
in these l emmas  is assumed to be unital and to satisfy the condition of  dim 
5~(hO < oo.] 

Lemma 3.5. Let 5~ be a unital set o f  states on K. Let  s E 5V(K)\c-b--n~ 
ffhp(K) and let aff  fT(K) denote the affine hull of  9~ in the corresponding 
f ini te-dimensional  Euclidean space. Then there is a closed half-space H of  
aff  9~ such that the fol lowing conditions are satisfied: 

(i) s E ~ ( K ) \ H .  
(ii) ~ 5fhp(K) C Int H. 

(iii) There  exist natural numbers  n, nl . . . . .  n,,, E N and atoms al ,  a2, 
. . . .  a,n in K such that n > ni (i <- m), ~i<m n i ~ 3, and such that H = 
{ t ~ af t  ~f(K) I ~i<m nit(ai) <-- n }. 

Proof  o f  Lemma 3.5. Observe  first that we can easily find a closed half- 
space H o f  aff  5~(K) satisfying the condit ions (i) and (ii). It suffices to put 
H = {t ~ aff  bY(K)If(t) --< 0}, w h e r e f i s  a functional of  the t ype f ( t )  = Ej___k 
qjt(cj) - q, ct . . . . .  ck E K, q, ql . . . . .  qk ~ R \  {0}. Since there is a nonempty  
open set of  functionals with the propert ies (i) and (ii), we may  choose f (and 
H) such that the coefficients q, ql . . . . .  q~ are rational. By mult iplying f 
with a suitable integer, we may  (and shall) suppose that q, qt . . . . .  qk are 
(nonzero) integers. 

For  j = 1 . . . . .  k let us define 

bj = { c~ if qj > O 
if  qj < O 

T h e n f ( t )  = "~j<-k Iqjlt(bi) - n, where n = q + E/<_~,qj<0 qj. 
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Since K is unital, no mutually orthogonal subset of K has a cardinality 
larger than the affine dimension of 5e(K). This dimension is assumed to be 
finite, so each element of K can be expressed as a join of finitely many 
mutually orthogonal atoms. We can therefore write f in the form 

f ( t )  = ~ nit(ai) - rt 
i~m 

where a~ . . . . .  am are atoms of K and { n i l i  --- rn} = {[qjl Ij --< k} C N. 
This means that H allows the expression of the form (iii). (If the condition 
Ei<_m ni -> 3 is not satisfied, we triple all the coefficients n, no . . . . .  n,,.) The 
only condition which has to be verified is the inequality n > ni (i ----- m). To 
this end, take for any ai (i -< m) a state si ~ c o n y  ~fhp(K) such that si (ai) = 

1 (the existence of such a state is assumed in Lemma 3.5). It follows that 
f ( s i )  < 0. We obtain 

ni = nisi(ai) < ~a n js i (a j )  = f ( s i )  + n < n 
j~-m 

The proof of Lemma 3.5 is complete. �9 

L e m m a  3.6.  Let ~ 9~ be a unital set of states on K. Let s 
5f(K)\~-b-h--f b~ and let H denote the closed half-space with the properties 
of Lemma 3.5. Then there is a unital OA L such that the following statement 
holds true: A state t ~ b~ admits an extension over L if and only if t E H. 

P r o o f  In view of Lemma 3.5, we have to show that there is an OA L 
containing K such that t E b~ admits an extension over L exactly if Ei_<m 
nit(ai) <-- n. Since c o n v  5ehp(K) C Int H, each t E ~ 5thp(K) satisfies the 
inequality ~i<_m nit(ai) < n. Since c o n v  b~ is a compact set, there is an 

> 0 such that Ei~-m nit(ai) <- n - ~. Multiplying all n, n~ (i -< m) by some 
(sufficiently large) integer, the inequality defining H remains unchanged. 
Thus, without any loss of generality, we shall suppose that the inequality 

(C) ~ nit(ai) <- n - 1 
i<.m 

is satisfied for all t E ~ b"hp(K). 
Notice that the number p = ~i__-,,, ni - n is positive, for s ~ H implies 

n <  ~<_m nis(ai)  <- Y,i<-m ni .  By Lemma 3.5 and Theorem 1.12, the Greechie 
diagram of  Fig. 6 represents an OA. Let us denote the latter OA by/ f .  Further, 
let us take such copies of K and/~" that K f-) /f  contains exactly 0, a~ . . . . .  
am and the complements of the latter elements. We now take for L the pasting 
of K and/~. 

Obviously, K is a suborthoalgebra of L. Suppose that t is a state on K 
that admits an extension over L. Consider the "rectangular" parts of L (see 
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Fig. 6; there are m parts of  this type there) that are covered by both "horizontal" 
and "vertical" blocks. The sum of  values attained by t in any "row" is at 
most  1 - t(ai) (i <- m). The sum of  values attained by t in any "column" is 
1. It fo l lows that Ei<_,, n,(1 - t (a3)  >-- p ,  which is equivalent to the required 
inequality Ei<-m nit(a3 - n <-- O. 

Let us on the contrary assume that t ~ 3~ and that t satisfies the 
above inequality. We shall show that t admits an extension over L. Let us 
determine the values o f  a state u ~ 9~(L) that will eventually become the 
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required extension of  t. [Thus we require u(ai)  = t(ai) for i --- m.] Let us put 
u(d~ k) = vi for all i, j ,  k, where vi are suitably chosen nonnegative numbers 
whose values will be specified later. We have u(e~) = 1 - t(ai) - pvi.  Since 
all u(e~) have to be nonnegative, we see that vi have to satisfy the inequality 
vi <--- (1 - t (ai)) /p.  The columns yield the equality ~ i < m  n i v  i = 1 ,  and there 
are no other requirements on vi (i <- m) .  It follows that if ~-~i<_m Hi]2 i = 1 and 
if, moreover, the inequalities vi <- (1 - t (ai)) /p (i <- m )  are satisfied, then u 
becomes a state which is an extension of  t. But the latter two properties o f  
vi (i <-- m )  are easy to be fulfilled for we have ~,i<-m hi(1 - t (ai)) /p - 1. We 
conclude that u E b~ is an extension of  t. 

Finally, we have to check that L is unital. Suppose that c ~ L with c 
4 : 0  and look for a state u on L satisfying u(c)  = I. The case c ~ K has 
been clarified above. Let c E L \ K .  We may restrict our attention to the case 
when c is an atom. We have to distinguish two cases: 

1. Suppose that c is one of  the atoms d~ k. We will now outline how one 
finds a state u ~ b~ such that u ( d l  l) = 1. (The remaining cases o f  d~ k can 
be argued similarly.) 

There is a state t ~ ~ b~ such that t(a~) = 1. In constructing its 
extension, some u ~ 5?(L), put u ( d l  I) = 1 and further put u(x)  = 0 for all 
atoms x of  L \ K  orthogonal to d]  1. For the atoms of  L \ K  nonorthogonal  to 
dl  1 we define u(d~ k) = vi, u(eJi) = 1 - t(ai) - ( p  - 1)vi, where vi >- 0 
(i -< m) are suitable constants. In order to have u(e~) >- O, we require vi <- 
(1 - t (a i ) ) / (p  - 1), while the vertical blocks yield (nl - 1)vl + "s nivi 
= 1. Obviously, the constants v; (i - m) can be found provided 

(nl - 1)(1 - t (aO)  + ~ ni(1 - t(ai) ) >~ p - 1 
2~i<_m 

Since t (aO = 0, we may rewrite the latter condition in the form ~i~m ni ( l  
- -  t(a~)) >- p .  This inequality is equivalent to the inequality determining H 
and hence it is satisfied by t. 

2. Suppose now that c is one o f  the atoms e~. We will now outline the 
procedure for finding u E b~ for c = el (the other cases argue similarly). 
Again, we take a state t E c o n v  5ehp(K) such that t (a'p = 1, and we extend 
t to a state u on L. We use the procedure described a b o v e - - f o r  the atoms of  
L \ K  nonorthogonal  to e], we define u(d~ k) = vi, u(e~)  = 1 - t(ai) - pvi ,  
where vi are suitably chosen constants (v~ -> 0, i -< m). We have to fulfil the 
inequalities vi <-- (1 - t (ai)) /p (i <- m)  and also the equality (hi - 1)vi + 
~2<_i<<rn n i v  i = 1 .  This means the inequality 

( n l -  1 ) ( 1 - t ( a l ) ) +  ~ ni(1 - t(ai))  >- p 
2<~i<_m 

After substituting t ( a p  = 0, we obtain li, i<_m hi(1 -- t(ai)) >-- p + 1, which 
is equivalent to (C). 
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We have verified that L is unital and this completes the proof of 
Lemma 3.6. [] 

Remark 3.7. The proof of Lemma 3.6 somewhat resembles the proof of 
Proposition 2.5. However, here we have required the unitality of the enlarge- 
ment, while in Proposition 2.5 we have required the uniqueness of the exten- 
sions of states. These two requirements contradict each other and therefore 
essentially different constructions are needed. 

Let us return to the proof of Theorem 3.4. Let K ~ STEAD. Suppose 
that there is a state s ~ b~ b~ and look for a contradiction. If 
K is embedded into a unital logic, all hyperpure states must have extensions. 
Therefore all states from ~ b~ must have extensions, too. We see that 
cony ffhp(K) is a unital set of states on K. We now apply Lemma 3.6 to 
construct a unital enlargement L of K such that s cannot be extended to a 
state on L. This contradicts the assumption K ~ STEAD and the proof 
is complete. [] 

Let us now formulate two explicit corollaries of the latter result. 

Corollary 3.8. Let K be a finite unital OA. Then K c STEAD if and 
only if b~p(K) = ~hp(g) .  

Proof. This follows directly from Theorem 3.4 and from the observation 
that if K is finite, then b~ is a polytope. [] 

Corollary 3.9. Let K = L(H), where H is a finite-dimensional Hilbert 
space with dim H >-- 3. Then K ~ STEAD. 

Proof. This follows from Theorem 3.4 and Gleason's (1957) theorem. [] 

In connection with the latter corollaries, let us make two illustrating 
remarks. First, there is a finite unital orthoalgebra K such that 9~p(K) ~ S~ 
(see, e.g., Navara and PtSk, 1983). Thus, the class STEAD does not contain 
all finite unital OAs. On the other hand, there is a finite OA (indeed, an 
orthomodular lattice) belonging to the class STEAD which is not a Boolean 
algebra (Navara, 1987; Navara and Rogalewicz, 1988). Second, it should be 
noted that even in the case of 5~ being finite dimensional, the inclusion 
~p(K) C ~ 5~ does not imply ~t~p(K) = ,~nhp(K ). Ovchinnikov (1993) 
presents an example of a countable OA (indeed, of an orthomodular lattice) 
K that is a suborthoalgebra of L(R 3) and enjoys the following property: Every 
state on K admits a unique extension over L(R3). It follows that 5fp(K) 
9~ although ff(K) = conv 5ehp(K) (and therefore K ~ STEAD). 

In view of the distinguished position of Hilbertian logics in quantum 
axiomatics, a natural question arises of whether Corollary 3.9 can be extended 
to arbitrary Hilbert spaces. The following result says that this is indeed so. 
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Theorem 3.10. Let K = L(H), where H is a complex Hilbert space and 
dim H ~ 2. Then K E STEAD. 

Proof Let us first prove the following auxiliary result. 

Lemma 3.11. Let H be a complex Hilbert space and let x be a unit vector 
of  H. Let sx denote the state on L(H) determined by the formula sx(P) = 
IIP(x)ll  2, where P E L(H). Then Sx E ~ h p ( L ( n ) ) .  

Proof of  Lemma 3.11. Let Px denote the orthogonal projection onto the 
linear span of x in H and let s be a state in 5P(L(H)) such that S(Px) = 1. By 
the theorem of Aarnes (1970), we can write s = sl + s2, where st is a 
completely additive measure on L(H) and s2 is a measure on L(H) which 
vanishes on every finite-dimensional projection. We see therefore that 
s2(P~) <-- s(P~) = 0 and also sz(Px) = 0. This means that s2(/) = s2(Px U 
P~) = s2(P~) + s2(P~) = 0 (I is the identity operator here) and this implies 
that s2(P) --- 0 for any P e L(H). We infer that s = s~ and therefore s is 
completely additive. By a generalized version of Gleason's theorem (Bunce 
and Wright, 1992), we see that s = ~ %tn, where the states t, (n ~ N) 
live on mutually orthogonal one-dimensional projections of H. Since s(P~) 
= 1 and since N~= l an = 1, we conclude that for all but one n E N we have 
an = 0. There is a single no ~ N such that e+n0 = 1 and it follows that t, o 
= sx. This completes the proof of Lemma 3.11. �9 

Let us return to the proof of  Theorem 3.10. We shall apply Bunce 
and Wright (1992) again: The states on L(H) are in a "true" one-to-one 
correspondence with the "functional" states on the von Neumann algebra 
~ ( H )  of all bounded linear operators on H. (Here we have used the word 
true to indicate that the correspondence preserves the natural algebraic and 
topological properties.) In particular, the pure states on L(H), 9~ are 
in a one-to-one correspondence with pure states on ~ (H) ,  ffp(9~(H)), and the 
hyperpure states on L(H), 5?hp(L(H)) are in a one-to-one correspondence with 
the functional hyperpure states on ~(H) ,  b~ Since A ~ ~ ( H )  is 
nonnegative if and only if sx(A) >- 0 for all x E H (llxll  = l ) ,  we have 

5?(~(H)) = c--6-h~{sxlX ~ H, Ilxll = 1 } = ~ ~r 

[see, e.g., Kadison and Ringrose (1986), Theorem 4.3.9, p. 262]. It follows 
that ~p(L(H)) C ~ 9~ and the proof is finished by applying Theorem 
3.3. This completes the proof of  Theorem 3.10. �9 

Let us finally take up another basic case of  O A s - - t h e  case of K being 
a Boolean OA. Obviously, if K is atomistic, then K ~ STEAD by Theorem 
3.3. [Indeed, if  K is Boolean, then 5r consists of  two-valued states; see, 
e.g., PtLk and Pulmannov+i (1991). If  K is atomistic, we immediately obtain 
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that SOp(K) C ~ SOhp(K).] However, the following fully general result is in 
force here. 

Theorem 3.12. Let K be a Boolean OA. Then K e S T E A D .  

P r o o f  Assume that K is Boolean and assume further that K is a subor- 
thoalgebra of a unital orthoalgebra L. Put S = {s e SO(K) Is admits an 
extension over L}. We want to show that S = SO(K). It suffices to prove that 
S is both closed and dense in SO(K). 

Obviously, S is closed in SO(K). Indeed, if s~ e SO(K) is a net in S that 
converges to s and if t~ E SO(L) is an extension of s~, then the compactness 
of 5f(L) ensures that a subnet of  t~ converges to a state. I f  t ~ SO(L) is this 
state, it is evident that t extends s and therefore S is closed in SO(K). 

To show that S is dense in SO(K), let us assume that s ~ SO(K). Let 

C ~ = {t ~ So(K)[Is(ai) - t(ai) t < e., i = 1, n} 
a l , a 2 , . . . , a n  �9 �9 �9 , 

where e > 0 and al, a2 . . . . .  an E K [thus C~l.a2,...,an is a standard neighborhood 
of s in S~ We shall prove that there is a state g in G]~.a2 ........ which belongs 
to S. One obtains easily from the definition of the suborthoalgebra that the 
set {al, az . . . . .  a,,} generates a finite suborthoalgebra in L that is Boolean. 
Let us denote the latter finite Boolean suborthoalgebra of L by B and let {bl, 
bz . . . . .  bn} be its atoms. Since L is unital, there are states t i ~  SO(L) (i <-- 
m) such that ti(bi) = 1. Obviously, El<_,, s(bi) = 1 and therefore t = Ei_<,, 
s(bi)ti is a state on L. Moreover, a simple computation yields that t(ai) = 
s(ai) for any i (i --< m). Thus, t restricted to K is a state on K which is near 
to s within G~,~ 2 ........ . By the construction, t ~ S. We have thus shown that 
S is dense in SO(K) and this completes the proof of  Theorem 3.12. �9 

Let us note in concluding that Theorem 3.3 and a combination of the 
reasoning of the proofs of Theorems 3.10 and 3.12 allow us to extend the 
latter results to products of  Boolean and Hilbertian OAs. Since these "coupled 
structures" may be of importance within quantum theories (see, e.g., Aerts, 
1981; Foulis and Ptfik, 1994; Ptfik and Pulmannov& 1991), let us conclude 
the paper by formulating this result. 

Theorem 3.13. Let Ki be a Boolean OA and let K2 be a Hilbertian OA. 
Then K~ • K2 E S T E A D .  
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